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ABSTRACT

Solar flares are efficient particle accelerators with a large fraction of released mag-
netic energy (10−50%) converted into energetic particles such as hard X-ray producing
electrons. This energy transfer process is not well constrained, with competing theo-
ries regarding the acceleration mechanism(s), including MHD turbulence. We perform
a detailed parameter study examining how various properties of the acceleration re-
gion, including its spatial extent and the spatial distribution of turbulence, affect the
observed electron properties, such as those routinely determined from X-ray imaging
and spectroscopy. Here, a time-independent Fokker-Planck equation is used to de-
scribe the acceleration and transport of flare electrons through a coronal plasma of
finite temperature. Motivated by recent non-thermal line broadening observations that
suggested extended regions of turbulence in coronal loops, an extended turbulent ac-
celeration region is incorporated into the model. We produce outputs for the density
weighted electron flux, a quantity directly related to observed X-rays, modelled in en-
ergy and space from the corona to chromosphere. We find that by combining several
spectral and imaging diagnostics (such as spectral index differences or ratios, energy or
spatial-dependent flux ratios, and electron depths into the chromosphere) the acceler-
ation properties, including the timescale and velocity dependence, can be constrained
alongside the spatial properties. Our diagnostics provide a foundation for constraining
the properties of acceleration in an individual flare from X-ray imaging spectroscopy
alone, and can be applied to past, current and future observations including those from
RHESSI and Solar Orbiter.

1. INTRODUCTION

Solar flares are one environment in which the Sun is able to accelerate particles. Using stored
magnetic energy released via magnetic reconnection (e.g., Parker 1957; Sweet 1958; Priest & Forbes
2000), particles can be accelerated to keV and MeV energies (Benz 2008). However, the processes
that ultimately transfer energy to particles, and the primary location(s) of acceleration are not well
constrained. During most flares we observe deka-keV energetic electrons trapped on newly formed
closed magnetic field lines, inferred by their bremsstrahlung X-ray emission (e.g., Holman et al.
2011). Thus, hard X-ray (HXR) emission has been a vital tool in determining the properties of flare-
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accelerated electrons (e.g., Kontar et al. 2011) since the first pioneering observations of the 1950s
and 1960s (e.g., Peterson & Winckler 1959; Frost 1969).

Hoyng et al. (1981) identified HXR sources at the ends of coronal loops, now routinely observed and
referred to as HXR footpoints, while Masuda et al. (1994) uncovered a HXR source in the coronal
looptop alongside the footpoints. The imaging spectroscopy abilities of the (Reuven) Ramaty High-
Energy Solar Spectroscopic Imager (RHESSI; Lin et al. 2002) and now the Spectrometer/Telescope
for Imaging X-rays (STIX; Krucker et al. 2020) onboard Solar Orbiter (SolO; Müller et al. 2020)
provide spatially resolved X-ray spectra in both the coronal looptop and HXR footpoint sources
(e.g., Emslie et al. 2003; Simões & Kontar 2013; Massa et al. 2022). These observations provide
validation to the ‘thick target’ model (e.g., Brown 1971) in which electrons are accelerated in the
corona and propagate down into the dense chromosphere losing their energy via Coulomb collisions
and producing X-ray emission mainly via electron-ion bremsstrahlung. The energy and rate of
energetic electrons can influence the size and shape of the X-ray emitting region, with higher energy
electrons propagating further into the chromosphere (e.g., Aschwanden et al. 2002; Kontar et al.
2010). Non-thermal electron transport is often described by a ‘cold-thick target’ model (CTTM),
in which electron energy E >> T , where T is the temperature of the ambient plasma.Whilst able
to describe non-thermal electrons when they reach cooler chromospheric layers, this model is not
successful in accounting for high coronal temperatures found during a flare. The ‘low energy cutoff’
problem is a well known issue with the CTTM, where low-energy electrons, and hence the total
electron power, cannot be constrained by X-ray spectroscopy. Consideration of thermalization led to
the warm target model (WTM) (Kontar et al. 2015, 2019), where coronal plasma properties help to
constrain the properties of non-thermal electrons, overcoming the low energy cutoff problem.

In recent years, the dynamic nature of flares has favoured stochastic ‘Fermi-type’ acceleration
models (e.g., magnetohydrodynamic (MHD) plasma turbulence, plasma waves) over large-scale direct-
current mechanisms (e.g., Larosa & Moore 1993; Petrosian 2012). Further, many models predict
turbulence is vital in transferring energy from large-scale magnetic fields to the small-scale particle
regime (e.g., Larosa & Moore 1993), backed by abundant observational evidence of turbulence in
flares (e.g., Kontar et al. 2017). Macroscopic random plasma motions in active regions and flares are
routinely detected via the presence of ‘non-thermal broadening’, whereby the width of an optically-
thin spectral line is greater than expected from ion thermal motions alone (e.g., Doschek et al.
1980; Antonucci & Dodero 1995). Non-thermal broadening is often greatest in regions that coincide
to the magnetic looptops (e.g., Doschek et al. 2014), where it is expected (in a standard model)
that the primary energy release and the bulk of particle energization occur. French et al. (2020)
observe turbulence surrounding the plasma sheet above the looptops, possibly due to the presence
of the tearing mode instability and the creation of magnetic islands. Moreover, Kontar et al. (2017)
examined the kinetic energy associated with turbulent non-thermal broadening alongside the power
associated with energetic electrons, inferring a turbulent dissipation time of 1-10 s. Such times are
consistent with MHD turbulence models (e.g, Goldreich & Sridhar 1995). A more detailed study
of the same flare by Stores et al. (2021) suggested turbulence has a more complex temporal and
spatial structure than previously assumed, with non-thermal broadening present throughout the
coronal loops, not just at the looptops. Further, Stores et al. (2021) introduced turbulent kinetic
energy maps showing the availability of turbulent kinetic energy throughout the loops and cusp, and
identified important spatial inhomogeneities in the plasma motions leading to turbulence.
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Previous studies have also explored the connection between X-ray looptop and footpoint sources.
Petrosian et al. (2002) studied 18 flares using the Yohkoh/HXR Telescope (Kosugi et al. 1991)
and determined on average that the X-ray spectral index γ was greater in the looptops than the
footpoints, by ≈ 1. However, the data here were limited by the resolution of Yohkoh. Battaglia &
Benz (2006) determined a spectral index difference closer to 2 in most flares (1.8), which is expected
in a simple scenario where electrons stream from a thin-target corona to a thick-target chromosphere,
but some flares showed differences ±2. Further, Simões & Kontar (2013) showed that a portion of the
accelerated electron population must be trapped in the looptop to account for the higher acceleration
electron rates in the looptop than the footpoints. Accelerated electrons may experience magnetic
trapping or pitch-angle scattering preventing the electrons from leaving the coronal looptop. Within
turbulent regions, charged particles may become trapped by turbulent scattering due to magnetic
fluctuations (Musset et al. 2018). Thus, the presence of turbulence in flares is intimately linked with
both electron acceleration and transport.

The insightful introduction of a spatially dependent turbulent acceleration diffusion coefficient in
Stackhouse & Kontar (2018), shows the importance of accounting for a spatial variation in turbulence;
producing a softer spectrum than the spatially-averaged description of electron acceleration and
transport given in the leaky box model (Chen & Petrosian 2013). Following the observational results
of Stores et al. (2021) and the preliminary work of Stackhouse & Kontar (2018), we perform a
detailed parameter study examining how the presence and varying properties of a spatially-extended
turbulent region in the corona changes the spectral and spatial (imaging) properties of observed
flare-accelerated electrons deduced from X-ray spectroscopy and imaging. §2 provides an overview
of the electron acceleration and transport model, §3 discusses the main results, and §4 summarises
the study and its application to HXR data.

2. COMBINED ACCELERATION AND TRANSPORT MODELLING OF ENERGETIC
ELECTRONS

2.1. Governing Fokker-Planck equation

A time-independent Fokker-Planck equation (e.g Holman et al. 2011; Battaglia et al. 2012; Kontar
et al. 2015; Jeffrey et al. 2019) is used to describe the evolution of an electron flux spectrum F (E, z, µ)
[electrons cm−2 s−1 keV−1], which is a function of field-aligned coordinate z [cm], energy E [keV]
and cosine of the pitch-angle (β) to the guiding magnetic field µ = cos β. The time-independent
Fokker-Plank equation is useful for studying electron transport when the transport time from the
corona to the lower atmosphere is shorter than the observational time (Jeffrey et al. 2014)1.

1 X-ray imaging times are usually tens of seconds to minutes to provide enough counts in the studied energy range.
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Figure 1. (a) Cartoon of an extended acceleration region in a flare loop, showing X-ray emission from a
looptop source and HXR emission from chromospheric footpoints. Black arrows indicate direction of electron
transport down the coronal loop. (b) Diagram listing the simulated accelerated regions. The acceleration
region is depicted by a colored rectangle, centred at the coronal looptop (z = 0′′) indicated by the dashed
black line. The strength (greater diffusion) of the acceleration region is demonstrated qualitatively by the
color gradient. Each row highlighted by the gray box shows the following: Row 1 - the control simulation
referred to as σ3, g, α3, Row 2 - simulations with different spatial extents (σ1, g, α3 and σ7, g, α3), Row 3 -
simulations with different spatial functions (σ3, l, α3 and σ3, r, α3), and Row 4 - simulations with different
velocity dependencies, (σ3, g, α2 and σ3, g, α4), shown by orange and pink acceleration regions, respectively.
(c) Relevant simulation timescales τ versus electron energy E. The colored dashed lines indicate different
acceleration timescales τacc where Aacc = 800, 1000, 2000, 4000, 6000, shown in black, blue, green, purple,
and orange, respectively. The solid red line shows the collisional deceleration timescale τc. The collisional
scattering timescale τcµ for µ = 0.15, 0.5 and 0.75 are shown by the solid green, purple, and blue lines,
respectively. An energy-dependent turbulent scattering timescale (Equation 13) τts is denoted by the orange
solid line.
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A Fokker-Planck equation describing both stochastic acceleration and scattering, and collisional
transport through a warm coronal plasma of temperature T [K], number density n [cm−3] and length
L [cm] may be written as,

µ
∂F

∂z
=
√

2m3
e

{
∂

∂E

[
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∂
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(
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e

8E2

{
∂

∂µ

[
(1− µ2) [erf(u[E])−G(u[E])]

∂F

∂µ

]}
︸ ︷︷ ︸

collisional pitch-angle scattering

+ SF (E, z, µ)

(1)

where v is velocity [cm s−1], and Γ = 4πe4lnΛn/m2
e, for electron charge e [statC], Coulomb logarithm

lnΛ, electron mass me [g], and kB is the Boltzmann constant. SF is the source term further discussed
in §2.4.

The error function erf(u) and the Chandrasekhar function G(u) are given by:

erf(u) ≡ 2√
π

∫ u

0

exp(−t2)dt (2)

and

G(u) ≡ erf(u)− u erf ′(u)

2u2
(3)

where u is the dimensionless velocity u = v/(
√

2vth), vth =
√
kBT/me and erf ′(u) = derf/du.

Such functions control the lower-energy (E ≈ kBT ) electron interactions ensuring that they become
indistinguishable from the background thermal plasma.
D(v, z) is the turbulent acceleration diffusion coefficient used to accelerate electrons out of a thermal

plasma and Dµµ(µ, v, z) is the turbulent scattering coefficient. Both are discussed in more detail in
§2.3.

2.2. Stochastic differential equations (SDEs)

To allow the evolution of an electron distribution to be modelled in space, energy, and pitch-angle
to the guiding magnetic field, Equation 1 can be solved numerically by its conversion into a set of
time-independent stochastic differential equations (SDEs) (e.g., Gardiner 1986; Strauss & Effenberger
2017):

zj+1 = zj + µj∆s , (4)
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µj+1 = µj

−

{
Γeff [erf(uj)−G(uj)]

4E2
j

−

√
2me
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j)Γeff [erf(uj)−G(uj)]

4E2
j

+Dµµ(µ, v, z)

√
me

2Ej

}
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Wµ

(5)

and

Ej+1 =Ej −
Γeff

2Ej
[erf(uj)− 2ujerf′(uj)] + 3

√
m3
e

2Ej
D(v, z)∆s

+
√

2m3
eEj

∂

∂Ej
[D(v, z)] ∆s

+
√

2[(2m3
eEj)D(v, z) + ΓeffG(uj)]∆sWE

(6)

where Γeff = ΓZeffm
2
e and Zeff is the effective atomic number (set to 1 for electron-electron collisions),

Wµ and WE are the Wiener functions, and ∆s is the length step, which is the maximum distance the
electron can travel in each simulation iteration. The thermal collisional length is given by λc = vthτc
where the thermal collisional time τc ≈ v3

th/Γ. λc can be used to determine an appropriate value of
∆s, since ∆s < λc. Here, ∆s = 1× 105 cm which is around two orders of magnitude smaller than λc
for our chosen plasma parameters (2.4) and ∼ two orders of magnitude smaller than the turbulent
scattering length λts(E) at E = 100 keV (see §2.3).

2.3. Turbulent acceleration, scattering and timescales

In Stackhouse & Kontar (2018), electrons are accelerated over an extended acceleration region using
a spatially-dependent diffusion coefficient, where the spatial distribution is given as an exponential
function. In order to explore different acceleration regions we adapt the acceleration diffusion coef-
ficient in Stackhouse & Kontar (2018) to allow us to choose various spatial distributions. Thus, in
this paper the acceleration diffusion coefficient D(v, z) is given by:

D(v, z) =
v2
th

τacc

(
v

vth

)α
×H(z) (7)

where τacc is the chosen acceleration timescale, α is a constant controlling the velocity dependence,
and H(z) is a chosen spatial distribution of turbulence in the coronal apex and loop.

Similar to Stackhouse & Kontar (2018), the acceleration timescale τacc is considered as a multiple
of the thermal collisional time, τc, given by:

τacc = Aaccτc (8)
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where Aacc is a constant set to either Aacc = 800, 1000, 2000, 4000 or 6000 in this paper.
In our study, the spatial distribution H(z) takes three different forms. Firstly, following Stackhouse

& Kontar (2018), we choose to model H(z) as a Gaussian distribution:

H(z) = exp

(
− z2

2σ2

)
(9)

centred at the coronal loop apex (z = 0′′), with the extent of the turbulent acceleration region
controlled by σ, the standard deviation. Here, three different values of σ are studied: σ = 1′′, 3′′, 7′′

(referred to as σ1, σ3, σ7, respectively). When modelled as a Gaussian, H(z) will be referred to as
g in the text. In all simulations, the loop length from the coronal apex to the corona-chromospheric
boundary is set to 20′′ (with a total loop length of 40′′), thus the bulk of the acceleration region
covers σ/20′′ = 5%, 15%, 35% of the half-loop respectively2.

Stores et al. (2021) found a linear decrease in flare non-thermal broadening from the coronal looptop
toward the footpoint/ribbon, particularly at times close to the peak in HXRs and thereafter. However,
at early times in the same flare, the non-thermal velocity maps lacked a clear pattern and were quite
chaotic. In order to account for these observations, two other spatial distributions: a linearly-
decreasing distribution from the loop apex and a uniformly-random distribution, are studied here,
given by:

H(z) =

(
1− |z|

zB

)
(10)

and

H(z) = U [0, 1] (11)

where zB is the corona-chromospheric boundary set at 20′′ from the loop apex. These different spatial
functions will be referred to as l and r, respectively. Both functions extend 3′′ from the apex, down
the loop leg, after which point H(|z| > 3′′) = 0. When referring to the linear (l) or random (r)
spatial functions, the value of σ represents the extent of the acceleration region from the loop apex
at z = 0′′ along either sides of the loop.

We also test how the velocity dependency, controlled by the power index α, changes the electron
spectral and imaging properties. Stackhouse & Kontar (2018) use α = 3 in order to compare to the
leaky box model. To build upon this, we will be using three values of α = 2, 3, 4 (referred to as α2,
α3, and α4, respectively). When studying different α, the spatial distribution will be modelled as g
with σ3. Similarly, when studying spatial extent and spatial function, α3 will always be used.

Here, we scatter electrons (turbulent fluctuations) using an isotropic3 pitch-angle diffusion coeffi-
cient (Schlickeiser 1989), with the addition of our spatially-dependent term H(z):

Dµµ(µ, v, z) = v
(1− µ2)

2λts
×H(z). (12)

2 We note that the arcsecond is traditionally used to measure the source position and size from X-ray observations and
values are calculated using a Sun-spacecraft distance of 1 AU but given values will vary for different Sun-spacecraft
distances, e.g. SolO/STIX.

3 The form of the underlying magnetic fluctuations is not well constrained in flare physics and hence, an isotropic
scattering model is used.
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Similar to Jeffrey et al. (2020), we define a scattering mean free path given by

λts[E] = λts,0

(
25

E[keV]

)
. (13)

Equation 13 is taken from Musset et al. (2018) and is determined empirically from X-ray imaging
spectroscopy (mainly emitted by < 100 keV electrons) and radio observations of gyrosynchrotron
radiation (from > 100 keV electrons).

It is insightful to consider the different timescales involved in Equation 1: collisional (thermal-
ization) timescale τc, the collisional (pitch-angle scattering) timescale τcµ ≈ 2

(1−µ2)
v3

Γ
, the chosen

acceleration timescale τacc, and the chosen turbulence scattering timescale τts = λts/v. Figure 1
shows the timescales involved for different electron energies.

For the turbulent scattering, we choose to model two cases:

i) Using Equation 13 with λts,0 = 2×108 cm (following the observed result of Musset et al. 2018).
Turbulent scattering, τts, dominates over collisional scattering, τµ, for all energies > 10 keV
(see Figure 1c) with τts ∼ 0.02 s for a 30 keV electron (or λts ∼ 2.3′′).

ii) λts → ∞ i.e., creating a scenario where turbulent scattering is dominated by collisional scat-
tering over all energies or occurs over approximately the same timescale.

Each case is chosen to cover a large range of possible underlying mechanisms of scattering and
acceleration such that:

• In case i) τacc > τts. Energy diffusion (acceleration) acts on a timescale greater than the
scattering mechanism. This case will be referred to as ‘short timescale turbulent scattering’.

• In case ii) τacc is closer to τts = τcµ. Energy diffusion (acceleration) acts on a timescale
approximately equal to the scattering mechanism. This case will be referred to as ‘without
turbulent scattering’.

In Figure 1c, using τacc = [800, 1000, 2000, 4000, 6000]τc we see that collisional timescales (τc and
τcµ) dominate for low energy electrons (< 10 keV).

2.4. Plasma and boundary conditions

Here we accelerate electrons out of a thermal background already assumed to be heated to a
high flare MK temperature. The source term SF (E, µ, z) describes the input distributions for the
energy, pitch angle and spatial position. Here, the electron distribution was input as an isothermal
Maxwellian distribution with energies between 1−20 keV. The injected pitch angle, µ, has an isotropic
distribution between −1 and 1. The spatial distribution, z, was input as a Gaussian distribution
centred at the loop apex z = 0′′ with a standard deviation which equals σ (or 3′′ for the l and r
functions).

The temperature and density of the flaring corona determine the collisional time. Here, the flaring
coronal plasma is modelled as warm plasma in which the temperature and density remain uniform
with values of T = 20 MK and n = 3 × 1010 cm−3, with a Coulomb logarithm of lnΛ = 20. The
chromospheric boundary is located 20′′ from the loop apex. At this boundary the temperature
decreases to T ≈ 0 (0.01 K), ensuring a cold target, and the density increases to n = 1012 cm−3. It
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Table 1. The seven acceleration regions studied. When a Gaussian (g) spatial function is used, the value
of σ represents the standard deviation of the Gaussian distribution. When a linear (l) or random (r) spatial
function are used the value of σ represents the extent of the acceleration region from the loop apex.

Acceleration Spatial Spatial Velocity

Region Name Extent Function Dependence

σ3, g, α3 σ = 3′′ Gaussian α = 3

σ1, g, α3 σ = 1′′ Gaussian α = 3

σ7, g, α3 σ = 7′′ Gaussian α = 3

σ3, l, α3 σ = 3′′ Linear α = 3

σ3, r, α3 σ = 3′′ Random α = 3

σ3, g, α2 σ = 3′′ Gaussian α = 2

σ3, g, α4 σ = 3′′ Gaussian α = 4

then exponentially-increases to photospheric densities (≈ 1017 cm−3) over a scale height of 130 km
(as in Battaglia et al. 2012; Jeffrey et al. 2019). Here, the Coulomb logarithm is reduced to lnΛ = 7.

Acceleration can only occur in the corona and the simulation ends when all electrons leave the warm
coronal plasma and enter the cold chromosphere. Here, they continuously lose energy, fall below < 1
keV and are removed from the simulation. In the corona, small acceleration timescales may result in
the electrons continuously gaining energy. We only study electrons between 1 and 100 keV here, which
is suitable for most flare X-ray observations (e.g., STIX only observes X-rays up to ∼ 100 keV). Thus,
an upper energy boundary removes electrons with energies greater 1 MeV, allowing the simulation
to finish. This boundary is only applied when the electrons reach the chromosphere where electrons
with energy > 1 MeV are considered lost in the Sun. An upper boundary of 1 MeV allows the
simulation to finish within a reasonable time whilst still removing high energy electrons.

For comparison with observational data, we also consider the presence of a separate background
thermal component in the coronal looptop,

nV Fth = EM

√
8

πme

E

(kBT )3/2
e−E/kBT (14)

with T = 20 MK as defined above. From comparison with observations, we use various emission
measure (EM) with 1049 cm−3 as a maximum across a region of −5′′ < z < 5′′. The addition of a
looptop thermal component can change the range of values expected for each diagnostic, discussed
in §3.

2.5. Simulation overview

Overall, we will study the seven different acceleration regions listed in Table 1. The left column
states the acceleration region name, the remaining 3 columns detail the properties of the region.
Firstly, our ‘control simulation’ has a velocity dependency of α = 3, and a Gaussian spatial distribu-
tion with a spatial extent of σ = 3′′. This acceleration region will be referred to as σ3, g, α3 and all
other simulation runs are compared against this control simulation i.e., if a simulation run is stated
to have σ1 then all other variable properties will remain default values, i.e., g and α3. The remaining
6 acceleration regions are outlined below:



10 Stores et al.

• Two acceleration regions change the spatial extent to σ = 1′′ or σ = 7′′, known as σ1, g, α3 and
σ7, g, α3, respectively. These two regions use a Gaussian spatial distribution and α = 3.

• Two acceleration regions change the spatial function to a linear function l or a random function
r, known as σ3, l, α3 and σ3, r, α3, respectively. These two regions use a spatial extent of 3′′ and
α = 3.

• Two acceleration regions change the velocity dependence to α = 2 or α = 4, known as σ3, g, α2

and σ3, g, α4, respectively. These regions use a Gaussian spatial distribution with σ = 3′′.

The seven acceleration regions are studied for five acceleration timescales: τacc =
[800, 1000, 2000, 4000, 6000]τc. We also run each simulation using shorter timescale scattering and
without scattering (see case i and case ii in §2.3), giving a total of 70 simulated regions.

3. RESULTS

In order to study how the properties of turbulent acceleration alter observable electron properties,
we produce outputs for the density-weighted electron spectrum nV F [electrons s−1 cm−1 keV−1]
(e.g., Brown et al. 2003), a quantity that is directly linked to X-ray observations without making
assumptions about the transport processes occurring in the corona. For a simplistic angle-integrated
case, the relation between the X-ray distribution I(ε) and nV F is given by

I(ε) =
1

4πR2

∫ ∞
E=ε

nV F (E)Q(E, ε)dE (15)

where ε is the photon energy, R is the Sun-Earth (or Sun-observation) distance and Q is the angle-
integrated bremsstrahlung cross section (Koch & Motz 1959).

Most solar flare spectra are steeply decreasing power laws and the spectral index of the X-ray
distribution is one parameter used to diagnose the properties of the accelerated electron population.
Here, we do not inject an accelerated electron population but electrons are accelerated directly out of
a thermal population. However, in a standard thick target model, an injected spectral index δ is often
discussed. Instead, we use the spectral index δnV F of the emitting electron spectrum nV F . In a simple
thick-target model, we would expect the inferred spectral index of an injected electron distribution
δ ≈ δnV F + 2 and the X-ray photon index γ ≈ δnV F + 1. However, it is well-known that transport
effects can increase or decrease this difference. For example, a small spectral difference between
the X-ray coronal looptop (LT) source and the X-ray footpoint (FP) source (δLTnV F − δFPnV F < 2) is
consistent with the confinement of electrons in the corona (e.g., Chen & Petrosian 2012).

Figure 2 shows one example simulation output; nV F (E, µ, z) versus E, |µ|, and |z|. This sim-
ulation output is created using our control simulation, σ3, g, α3, for acceleration times of τacc =
[800, 1000, 2000, 4000, 6000]τc.

The top panel of Figure 2 depicts the full (space and angle integrated) flare spectra nV F versus E.
A thermal part is dominant at energies below ≈ 20 keV. This thermal component is related to the
studied electron population only (e.g., thermalization). Where possible, the addition of a separate
background thermal component, nV Fth in Equation 14, will be examined in regards to how it will
affect the described diagnostic tools.

The second row in Figure 2 plots nV F versus |z| (energy and angle integrated) for the different
τacc. For all acceleration timescales shown in Figure 2 there is a peak in nV F at the coronal looptop,
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centred at the apex z = 0′′. A secondary peak in nV F occurs in the chromosphere. The position of
the peak in the chromosphere changes with τacc (this will be discussed further in §3.3.2). Furthermore,
as τacc decreases, nV F in the chromosphere increases, as expected.

The third row in Figure 2 plots nV F versus |µ| (energy and space integrated) for the different
τacc. The initial electron µ distribution is isotropic and in the absence of anisotropic scattering
mechanisms, we would expect the electron distribution to remain isotropic, which is true for the
majority of simulated cases. However, in low τacc cases (800τc (pink) and 1000τc (black)), the
distribution can move away from isotropic4 and peak closer to 90◦. We do not discuss the resulting
directivity further in this study; this will form part of an ongoing study regarding the measurement
of solar flare electron directivity from X-ray observations.

In the following subsections, we study spectral diagnostics; both spatially resolved and integrated,
and spatial (imaging) diagnostics that can infer the properties of acceleration in an individual flare
from X-ray observations alone.

3.1. Spectral and imaging diagnostics

3.1.1. Full flare energy spectra

The main diagnostic tool of past (e.g., RHESSI) and current (e.g., SolO/STIX) flare X-ray instru-
mentation is high resolution spectroscopy (∼few keV, space-integrated and space-resolved) constrain-
ing the bulk of the accelerated electron properties to-date. Similar to Stackhouse & Kontar (2018),
the top panel of Figure 2 shows how the flare spectra change due to varying τacc with the shape
of the spectrum changing significantly from τacc = 800τc to τacc = 6000τc. When the acceleration
timescale is high, i.e τacc = 6000τc, nV F remains mostly thermal. However, as τacc decreases, nV F
increases and a non-thermal tail forms (harder spectrum). As expected, the spectral index δnV F
increases as acceleration timescale increases ranging from δnV F = 0.5 at τacc = 800τc to δnV F = 7.6
at τacc = 6000τc

5. In Figure 2 (top), a single power law is fitted to the data over an appropriate
energy range to find the spectral index (shown by the solid lines).

Figure 3 shows the full-flare δnV F versus τacc, for all spatial extents (3a), spatial functions (3b),
and velocity dependencies (3c). Simulations ‘with’ and ‘without’ short timescale turbulent scattering,
case i) and ii), are shown with crosses and circles respectively. Shaded rectangles indicate the addition
of a background thermal component, nV Fth (with a maximum EM = 1049 cm−3), that may change
the inferred value of δnV F . For each spectra, the spectral index δnV F is determined from E = 20 keV
or greater (to avoid the influence of the thermal part at lower energies) until the highest suitable
energy, with a maximum value of E = 100 keV. We choose this maximum value for two reasons: (1)
most simulation outputs are noisy after this energy and (2) most solar flare spectra (e.g. RHESSI,
STIX) are fitted between this range above the background. If the highest suitable energy was < 30
keV δnV F was fitted from a minimum of 15 keV and the fits were studied carefully by eye. Several
simulations have an increasing energy spectrum as a result of very high acceleration (i.e σ3, g, α4 at
τacc = 800τc), and the spectral index of these simulations has been removed from Figure 3 since we
do not see increasing spectra in solar flare data. Similarly, several simulations have only thermal
spectra, where δnV F could not be determined.

4 In this particular case, without short timescale turbulent scattering, the lack of collisional scattering at high energies
and the rapid acceleration in these cases leads to electrons becoming trapped at certain angles. Electrons trapped at
small angles stream to the chromosphere while electrons trapped at angles closer to 90◦ spend longer in the corona.

5 We note that in a traditional thick-target analysis this leads to an injected δ ≈ 0.5 + 2 = 2.5 and δ ≈ 7.6 + 2 = 9.6
respectively.
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Figure 2. Example nV F [units: electrons s−1 cm−2 keV−1] distributions versus energy E (top), space |z|
(middle) and pitch-angle |µ| (bottom). This example is the control simulation σ3, g, α3, for different acceler-
ation times τacc. Variations in acceleration properties (space, time) lead to distinctive changes (diagnostics)
in all observables (spectra), imaging (space) and directivity (pitch-angle).

Considering Figure 3, as δnV F increases, τacc increases for all simulations. For the simulations
studied, σ3, g, α4 provides a lower boundary on δnV F at a given τacc, producing the hardest spectra
(Figure 3c). Increasing the velocity dependency increases the spectral index such that δnV F [α3 > α4]
for a given acceleration timescale. No values for σ3, g, α2 are included, as the energy spectra was
thermal for all acceleration timescales.

Figure 3a shows that as the spatial extent increases, δnV F decreases, such that δnV F [σ1 > σ3 > σ7],
as expected, since electrons experience more acceleration in an acceleration region of greater spatial
extent, leading to harder spectra. In contrast, changing H(z) (Figure 3b) does not noticeably change
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Figure 3. Full flare spectral index δnV F versus τacc for different: (a) spatial extents (σ1, g, α3 (light blue),
σ7, g, α3 (pink)); (b) spatial functions (σ3, l, α3 (green), σ3, r, α3 in green (yellow)); (c) velocity dependence
(σ3, g, α4 (dark blue)). Our control simulation σ3, g, α3 is shown in each graph (black/gray). Simulations
with and without the inclusion of shorter timescale turbulent scattering are shown with crosses and circles.
Each shaded region indicates the possible range of δnV F when considering the addition of a background
thermal component (up to a maximum value of EM= 1049 cm−3).

δnV F with τacc. In general, both l and r with extent 3′′ (σ3, l, α3 and σ3, r, α3, respectively) produce
larger δnV F than g of the same spatial extent (σ3, g, α3) and a more apt comparison may be with a
g with a smaller spatial extent, i.e σ1, g, α3.

The addition of short timescale turbulent scattering and/or a background thermal component in-
creases the spectral index. Generally, as the acceleration timescale increases, the range of the spectral
index increases. Whilst it is still possible to distinguish between different velocity dependencies at
larger τacc, it is difficult to distinguish between other parameters such as spatial extent.

3.1.2. Looptop and footpoint energy spectra

Imaging spectroscopy (spatially resolved spectra) is an essential tool for constraining the properties
of electron acceleration and transport in flares. In Figures 4a-c we plot examples of spatially resolved
energy spectra showing separate spectra for the coronal looptop (4b) and chromospheric footpoints
(4c) alongside the full flare integrated spectrum (4a). A comparison of the spectral indices for the full
flare δnV F , looptop δLTnV F and footpoint δFPnV F sources are shown in the legends. Similar to observational
imaging spectroscopy, we define the looptop region at −5′′ < z < 5′′, and the footpoints sources at
20′′ < |z| < 30′′ 6. As in Figure 2, the example spectra in Figure 4a-4c shows the control simulation
for different τacc. A power law fit (thick solid line) is used to find the spectral index.

In general, for each simulation δnV F is harder than the looptop spectral index δLTnV F . Similarly, the
footpoint spectral index δFPnV F is harder than δnV F , such that, δFPnV F > δnV F > δLTnV F , as expected. For
example, the control simulation with τacc = 1000τc gives δFPnV F = 0.5 > δnV F = 0.7 > δLTnV F = 1.9.

Figure 4d, 4e, and 4f plot the difference δLTnV F − δFPnV F for different spatial extents (4d), spatial
functions (4e), and velocity dependencies (4f). The larger the value of α (velocity dependence), the

6 Here, the shown footpoint spectra is the mean spectra of both footpoint spectra.
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Figure 4. Panels a-c: Control simulation energy spectra (nV F [units: electrons s−1 cm−2 keV−1] versus
E) for: (a) the full flare, (b) coronal looptop (LT) only, and (c) footpoint (FP) only (no background thermal
component), all values of τacc are shown in different colors given in the legend. (Panels d-f) Spectral index
difference δLTnV F − δFPnV F and (panels g-i) Spectral index ratio δLTnV F /δ

FP
nV F vs. τacc for simulations changing:

(d and g) spatial extent, (e and h) spatial function, and (f and i) velocity dependence. Simulations with
and without the inclusion of shorter timescale turbulent scattering are shown with crosses and circles. Each
shaded region indicates the possible range of δnV F when considering the addition of a background thermal
component (up to a maximum value of EM= 1049 cm−3).
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greater the spectral difference δLTnV F − δFPnV F with σ3, g, α4 showing δLTnV F − δFPnV F ≈ 2 for all τacc. In this
case, electrons are accelerated rapidly and behave similar to an injected distribution in the corona
that streams to the chromosphere, approximately following the simple thick-target expectation. The
smaller the spatial extent, the larger the spectral difference δLTnV F − δFPnV F since electrons escape the
acceleration region faster. This may also explain why the l and r spatial functions generally have
larger spectral differences compared to g, since the spatial extent is 3′′ (see Figure 1b).

Previous work (e.g, Chen & Petrosian 2012) shows that a spectral index difference less than 2 is
often consistent with the confinement of electrons in the corona. Firstly, this is mirrored in our
results when the acceleration becomes less efficient. Also, we do not need to necessarily invoke
different turbulent spectra or exotic plasma waves that preferentially accelerate electrons at 90◦

(Chen & Petrosian 2012), for such confinement. For example, as τacc increases, the spectral index
difference is smaller for all simulation runs apart from the extreme σ3, g, α4 case that has efficient
acceleration across all τacc. Our different scattering cases i) and ii) also change the spectral index
difference. When turbulent scattering acts on longer timescales (circles in Figure 4) closer to the
collisional time, the spectral difference is . 2 for all cases. When the turbulent scattering acts on
shorter timescales (crosses), the spectral index difference tends to increase slightly at low τacc, which
is mainly due to the formation of steeper spectra in these cases. Further, the spectral index difference
increases when a larger background thermal component is present since the non-thermal component
in the corona is hidden by the large (steep) thermal background.

We also study the usefulness of the ratio diagnostic δLTnV F/δ
FP
nV F with τacc, seen in Figures 4g, 4h, and

4i. For all acceleration regions, δLTnV F/δ
FP
nV F decreases as τacc increases. When τacc ≤ 1000τc the ratio

δLTnV F/δ
FP
nV F > 1. At high acceleration timescales (τacc ≥ 2000τc), the spectrum is mainly thermal,

and the ratio begins to flatten remaining at ∼ 1.
Shorter timescale turbulent scattering generally leads to smaller spectral index ratios (again due

to the steeper footpoint spectra), as does the addition of a background thermal component with
increasing EM. Furthermore, the greater the velocity dependence or spatial extent, the greater the
ratio. Once again, the spatial functions are harder to separate. However, g often has a greater ratio
than l and r. Thus in general, the more efficient the acceleration in the loop, the larger the ratio
δLTnV F/δ

FP
nV F .

Although differences in spectral index between looptop and footpoint sources are often discussed in
observational work (e.g., Battaglia & Benz 2006; Chen & Petrosian 2012; Simões & Kontar 2013),
here we find that the ratio of spectral indices δLTnV F/δ

FP
nV F is the more reliable diagnostic for indicating

the acceleration timescale when there is a small background thermal component. Whereas, the
spectral difference is a stronger diagnostic for the velocity dependence.

3.2. Energy-averaged flux ratios

Figures 5a, 5b, and 5c plot the ratio of looptop nV F to footpoint nV F over all energies defined as,

ϕ =
nV F (−5′′ < z < 5′′)

nV F (20′′ < |z| < 30′′)
, (16)

against τacc for different spatial extents (5a), spatial functions (5b), and velocity dependencies (5c).
Simulations with and ‘without’ shorter timescale turbulent scattering are shown with crosses and
circles, respectively. We exclude a background thermal component from Figure 5 as this component
can dominate this particular diagnostic by several orders of magnitude for large EM. Thus, this
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Figure 5. (Panels a-c) ratio of looptop nV F and footpoint nV F , defined as ϕ = nV F (−5′′ < z <
5′′)/nV F (20′′ < |z| < 30′′) (energy-integrated), versus τacc for simulations which change: (a) the spatial
extent, (b) spatial function, and (c) velocity dependence of the acceleration region. Simulations with and
without the inclusion of shorter timescale turbulent scattering are shown with crosses and circles. (Panels d-
i) show an example of energy-dependent ϕ versus energy for different spatial extents, i.e, (d and g) σ1, g, α3,
(e and h) σ3, g, α3, and (f and i) σ7, g, α3. These results do not include an additional background thermal
component.

diagnostic will not be suitable for observations which have a large background thermal component. If
ϕ > 1, looptop emission dominates and if ϕ < 1, footpoint emission dominates. For each acceleration
region studied, ϕ increases as τacc increases, with ϕ > 1 for all τacc, except σ3, g, α4 at τacc ≤ 1000τc.
Thus, for almost all simulations, the looptop emission (consisting of lower energy emission) dominates
regardless of the acceleration timescale, i.e., due to decreasing energy spectra in solar flares.
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For suitable flares with small background EM (possibly so-called ‘cold’ flares e.g., Motorina et al.
2020 or microflares e.g., Glesener et al. 2020), the spatial extents and velocity dependencies of the
acceleration region are clearly separated by ϕ, such that ϕ[α2 > α3 > α4] and ϕ[σ1 > σ3 > σ7].
Moreover, there is even a slight separation between different spatial functions, with ϕ[r > l > g]. The
difference between r and l may be due to the inhomogeneous acceleration when the spatial function
is random, r. As a result there are locations in the loop where electrons experience no acceleration.
In comparison, electrons moving within l experience (decreasing) acceleration at all locations within
the region extent.

Simulations ‘without’ turbulent scattering can lead to smaller ϕ since electrons ‘locked’ at ≈ 90◦ can
experience greater trapping (and produce more coronal emission) even compared to the confinement
produced by short-timescale scattering, case i). Here, this results in simulations without shorter
timescale turbulent scattering, case ii), having a value of ϕ that is approximately 1.0 - 1.5 times
greater.

3.2.1. Energy-dependent flux ratios

Instruments such as RHESSI and STIX provide us with spatially resolved data of solar flares in
several energy bins. Figures 5d-5i plot energy-dependent ϕ versus E. For realistic comparison with
imaging data, we use the following energy bins: E = 3 − 6 keV, 6 − 12 keV, 12 − 25 keV, 25 −
50 keV, 50 − 100 keV. Figure 5 shows simulations without turbulent scattering (5d-5f) and with
short-timescale turbulent scattering (5g-5i).

As energy increases, ϕ decreases. Thus, as E increases the footpoint emission becomes more
dominant, as expected. The examples shown in Figures 5d-5i compare different spatial extents,
σ1, g, α3 (5d and 5g), σ3, g, α3 (5e and 5h), and σ7, g, α3 (5f and 5i) for all τacc

7. We choose to
compare spatial extent σ, since this property produces a larger variation in ϕ with τacc as shown in
Figures 5a - 5c. For a given σ, we see differences in ϕ with energy for different τacc. For example, at
lower τacc and for a smaller spatial extent, we see larger ϕ, as electrons experience less acceleration.
For the other studied variables (not shown), such as velocity dependence, as α increases we see a
larger spread in ϕ with τacc for a given energy. Acceleration regions with r show slightly less variation
in ϕ with τacc, similar to simulations with α2. Whereas, the l and g distributions show a larger range
of ϕ versus τacc for each energy bin.

Shorter timescale turbulent scattering decreases energy dependent ϕ by up to an order of magnitude,
with this difference increasing with energy E, due to the decrease in higher energy footpoint emission.

Adding a background thermal component increases ϕ by several orders of magnitude (not shown).
However, electrons with energy≥ 25 keV are not dominated by the thermal component at acceleration
timescales ≤ 2000τc. Overall, if a flare has a small background thermal component, ϕ may help
to constrain all properties of the acceleration region. However, if a flare has a large background
thermal component, energy-independent ϕ becomes obsolete and energy-dependent ϕ is not useful
for E ≤ 25 keV.

3.3. Changes in nV F in space

Figure 2 shows the energy- and angle-integrated spatial distribution for the control simulation for
different τacc. At the coronal looptop, centred at z = 0′′, nV F generally increases as τacc decreases.

7 At higher energies, data may be missing at larger acceleration timescales.
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However, when acceleration is very large (small τacc), the coronal emission decreases with τacc. The
chromospheric emission changes drastically as τacc decreases, with nV F increasing by up to two orders
of magnitude, with greater nV F at greater depths (more emission deeper in the chromosphere).
Looking at velocity dependence, simulations which use α2 experience very little acceleration. For all
τacc, the energy spectra are mainly thermal. This leads to spatial distributions with large nV F at
the loop apex compared to the footpoint (similar to σ3, g, α3 at τacc = 6000τc in Figure 2). As τacc
decreases, nV F in both the looptop and footpoints increases.

Alternatively, for α4 and small τacc, the majority of the emission is concentrated to the chromo-
spheric footpoints (similar to σ3, g, α3 at τacc = 800τc in Figure 2). For α4, as τacc decreases, nV F
in the looptop decreases for all values of τacc, which is in contrast to α2. Compared to α2, electrons
move deeper into the chromosphere (greater nV F at greater depths). This will be further discussed
in §3.3.2.

Simulations with less overall acceleration, i.e., σ1, g, α3, produce spatial distributions similar to that
of α2, for all τacc. Once again, simulations using l or r may be better compared to a g simulation
using a smaller spatial extent, i.e σ1, g, α3, than σ3, g, α3.

More interestingly, simulations using σ3, g, α3 and σ7, g, α3 show spatial distributions similar to
simulations using either α2 and α4 depending on τacc. At large τacc ≥ 2000τc, σ3, g, α3 and σ7, g, α3

have spatial distributions similar to α2, in which nV F in the looptop increases as τacc decreases and
nV F in the footpoints and looptops are of the same order of magnitude.

Whereas, when τacc < 1000τc, σ3, g, α3 and σ7, g, α3 have spatial distributions similar to α4, such
that nV F in the looptop decreases as τacc decreases and nV F in the footpoints is up to two orders
of magnitude greater than in the looptop.

The addition of the energy dependent shorter timescale turbulent scattering model reduces nV F in
both the corona and chromosphere. However, the width (i.e., depth of emission) in the chromosphere
is not changed as significantly.

3.3.1. Energy-dependent spatial distribution

Figures 6a-6f plot angle-integrated nV F versus z for the control simulation using τacc = 800τc
(6a and 6d), 2000τc (6b and 6e) and 6000τc (6c and 6f), with (6d – 6f) and without (6a – 6c) the
inclusion of shorter timescale turbulent scattering, using a 1′′ spatial binning. In this figure, z = 0′′

indicates the loop apex with the chromospheric boundary at ±20′′.
The spatial distribution can change drastically for different energy bins. For all spatial distributions

and acceleration timescales, electrons with energy E = 3−6 keV have the highest electron flux in the
coronal looptop, but nV F for this energy range is significantly smaller in the footpoints. As electron
energy increases, nV F in the looptop decreases. Regardless of acceleration timescale, the two highest
energy bins (E = 25 − 50 keV, 50 − 100 keV) do not show a peak in the coronal looptop. This is
consistent with observations where coronal X-ray sources are usually observed at ≈ 10− 30 keV.

At high acceleration timescales, nVF at both the chromospheric boundary (|z| = 20′′) and the
loop apex (z = 0′′) is dominated by low energy electrons. At lower acceleration timescales (e.g.
τacc = 800τc, Figure 6a), the footpoint emission generally increases. However the energy of the
electrons at the footpoints appears to depend on the spatial function used. For g, α3 simulations (i.e,
σ1, g, α3, σ3, g, α3, and σ7, g, α3) the footpoint emission is comprised of all energy bins, and as the
spatial extent increases, higher energy electrons become more prominent. In comparison, simulations
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Figure 6. Panels a-f: Example spatial distributions nV F [electrons s−1 cm−2 keV−1] versus |z| for dif-
ferent energy bins, for the control simulation, at (a and d) τacc = 800τc, (b and e) 2000τc, and (c and
f) 6000τc, without (a-c) and with (d-f) the inclusion of shorter timescale turbulent scattering. Panels g-i:
η = (nV F (E = 15 − 20 keV))/(nV F (E = 50 − 100 keV)) versus τacc for different (g) spatial extents, (h)
spatial functions, and (i) velocity dependencies. Crosses and circles show simulations with and without the
inclusion of shorter timescale turbulent scattering. Each shaded region indicates the possible range of η when
considering the addition of a background thermal component (up to a maximum value of EM= 1049 cm−3).
Panels j and k: η and ηFP = (nV F (E = 20 − 30 keV))/(nV F (E = 50 − 100 keV)) versus τacc, for all
simulations, respectively.
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with l and r have significantly less high energy particles in the footpoints. Instead, even at a low
acceleration timescale, the 6− 12 keV emission is still the most prominent.

The acceleration timescale at which high energy emission (E = 50− 100 keV) dominates over low
energy emission (E = 15 − 20 keV) can be seen in the Figures 6g-6i which shows η for different
acceleration timescales, where

η =
nV F (E = 15− 20 keV)

nV F (E = 50− 100 keV)
. (17)

The dashed line is η = 1. Simulations with and without turbulent scattering are shown by crosses
and circles, respectively. The addition of a background thermal component is represented by the
shaded rectangles, creating a range of values for η. Several data points are missing, particularly at
high acceleration timescales, as there are no electrons with energy 50− 100 keV for that simulation.

Let us now consider simulations without turbulent scattering and no background thermal com-
ponent. For all acceleration regions, η increases over several orders of magnitude as acceleration
timescale increases from τacc = 800τc to τacc = 6000τc. When τacc ≥ 1000τc, low energy electrons
dominate for all simulated regions (except for α4). Whereas when τacc = 800τc acceleration regions
which have large footpoint emission (i.e, σ3, g, α3, σ7, g, α3, and σ3, g, α4) also have values of η < 1 ,
as high energy electrons dominate.

The greater the spatial extent or the velocity dependence the smaller η for a given acceleration
timescale, such that η[σ1 > σ3 > σ7] and η[α2 > α3 > α4]. However, the separation of the velocity
dependencies is much clearer than the spatial extents. Once again, α2 and α4 show two extremes of
η, where α4 is the lower boundary for a given acceleration timescale. This is clearly shown in Figure
6j which shows how η changes for all spatial functions and acceleration timescales. Unfortunately,
simulations using α2 only have electrons with energy greater than 50 keV for τacc = 800τc. For this
timescale α2 creates an upper boundary for η. Using this diagnostic, it is difficult to separate the
spatial functions l, r, and g.

The addition of short timescale turbulent scattering generally increases η by up to an order of mag-
nitude. The greater the acceleration timescale, the smaller the change in η due to shorter timescale
turbulent scattering. The addition of a background thermal component increases η by several orders
of magnitude, removing most trends in the graphs. The only property of the acceleration region that
could still be easily determined is the velocity dependence.

Similar to the integrated spatial distribution, in the chromosphere (|z| ≥ 20′′) we study ηFP where

ηFP =
nV F (E = 20− 30 keV)

nV F (E = 50− 100 keV)
. (18)

Figures 6j and 6k show η and ηFP for each simulation, respectively. Acceleration timescales are shown
in different colors, indicated in the legend. Compared to η for the entire spatial distribution, for ηFP

the lower energy bin has been increased to better suit the chromosphere. When a background thermal
component is not included in the corona, both η and ηFP are almost identical. The differences between
η and ηFP are centred around η = 1. When η > 1, ηFP may be slightly smaller than η. Whereas
when η < 1, ηFP & η. However these differences are always less than an order of magnitude.

As with η, from ηFP the velocity dependence and spatial extents may be identified. However unlike
η, ηFP does not suffer from additional background thermal effects and thus, is a useful diagnostic for
studying acceleration properties.
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without (top) and with (bottom) the inclusion of shorter timescale turbulent scattering are displayed. Dif-
ferent acceleration timescales τacc are shown using different colors with each acceleration region depicted by
a different symbol.

Figure 7 shows nV F (E = 6 − 12 keV) against nV F (E = 50 − 100 keV) for each acceleration
timescale, indicated by a different color, and each simulation, shown by a different symbol. Sim-
ulations ‘without’ turbulent scattering are shown on the top and simulations with turbulent scat-
tering are shown on the bottom. The black line is the identity line, when nV F (E = 6 − 12 keV)
= nV F (E = 50− 100 keV).

To the left of the identity line, for all simulations without turbulent scattering (except σ3, g, α4), as
acceleration timescale increases, nV F (E = 50− 100 keV) increases over several orders of magnitude.
In comparison, nV F (E = 6 − 12 keV) remains fairly consistent, increasing by just one order of
magnitude across all simulations. There is a slight increase in nV F (E = 6− 12 keV) which peaks to
the left of the identity line. Unlike the other simulations, for simulations with α4, nV F (E = 50−100
keV) remains fairly constant, and nV F (E = 6 − 12 keV) decreases over an order of magnitude as
acceleration timescale increases.

Similar trends can be seen in simulations with turbulent scattering, except the range of values of
nV F (E = 50−100 keV) is smaller, increasing over three orders of magnitude instead of six. Generally,
simulations which include shorter timescale turbulent scattering have a lower nV F (E = 50 − 100
keV).
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For simulations without turbulent scattering, the only data to the right of the identity lines comes
from simulations which use α4 for 800τc < τacc < 2000τc. These data points represent the simulations
in which high energy emission (E = 50 − 100 keV) dominates over low energy emission in the
footpoints (E = 6− 12 keV).

Overall, η can be used to determine the velocity dependence. If the background thermal component
is small the spatial extent and spatial function may also be determined. Furthermore, plotting
nV F (E = 6− 12 keV) against nV F (E = 50− 100 keV), again for a small thermal component, may
indicate if short timescale turbulent scattering is present.

3.3.2. Footpoint height versus energy

In a collisional thick-target model, the depth electrons travel into the chromosphere changes with
electron energy, with higher energy electrons moving deeper into the chromosphere.

Figure 8 shows emission in the chromosphere. Figures 8a and 8d plot nV F versus |z| in the
chromosphere using a 0.1′′ spatial resolution with no turbulent scattering, whilst Figures 8b and 8e
show the spatial distribution with short timescale turbulent scattering. An acceleration timescale of
800τc (Figures 8a-8c) and an acceleration timescale of 2000τc (Figures 8d-8f) are both shown. The
colors show different electron energy bins, given in the legend.

Consider the simulations without short timescale (‘no’) turbulent scattering (Figures 8a and 8d).
The spatial distribution in the chromosphere changes drastically depending on the amount of accel-
eration in the loop. When there is little acceleration (e.g., τacc = 6000τc) all energy bins show a
peak in nV F at the chromospheric boundary and nV F decreases with chromospheric depth. Alter-
natively, when there is efficient acceleration (τacc = 800τc) there is an initial peak in nV F at the
chromospheric boundary, where lower energy electrons are dominant. Then, we also see a secondary
peak at ≈ 2′′ into the chromosphere, where higher energy electrons are dominant.

When we do account for shorter timescale turbulent scattering (Figures 8b and 8e) the chromo-
spheric emission is reduced across all energy bins. Furthermore, the secondary peak in nV F seen at
small τacc almost fully disappears in the two simulations shown in Figure 8.

Figures 8c and 8f show the average electron depth in the chromosphere versus electron energy
for τacc = 800τc and τacc = 2000τc, respectively. For a comparison with data, here the average
depth is calculated using the first moment of nV F versus z for each energy bin8. Here, a depth of
0′′ corresponds to the top of the chromosphere. All simulated acceleration regions without shorter
timescale turbulent scattering are shown in different colors, given in the legend.

Changing the velocity dependence creates upper and lower boundaries of electron depth. For any
energy, electrons in α2 simulations appear at locations closer to the chromospheric boundary (0′′)
and for α4, electrons are located deeper in the chromosphere. Between these two boundaries are the
other simulations (using α3). As τacc decreases, electrons of a give energy are located deeper in the
chromosphere. Thus, the initial depth of the chromospheric emission (given by low energy electrons)
may help indicate the acceleration timescale and velocity dependence. At low acceleration timescales
of τacc = 800τc, the electron depth into the chromosphere increases linearly with energy. For σ3, g, α4,
we see this trend for both acceleration timescales shown. However, the gradient of depth with energy
increases as τacc increases. This comparison cannot be made for other simulated acceleration regions,

8 We use a mean value of the chromospheric depth since it is a better comparison with similar published observational
results i.e., Kontar et al. (2010) where the centroid positions of HXR footpoint sources are determined to sub-arcsecond
accuracy.
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Figure 8. Panels (a), (b), (d), and (e): Spatial distributions (nV F versus |z|) in the chromosphere for
different energy bins for the control simulation (σ3, g, α3, without and with the inclusion of shorter timescale
turbulent scattering). Acceleration timescales 800τc and 2000τc are shown in (a)-(b) and (d)-(e), respectively,
and z = 20′′ represents the top of the chromosphere. Panels (c) and (f): The mean depth electrons travelled
into the chromosphere versus energy for simulations without turbulent scattering for an acceleration timescale
of 800τc and 2000τc, respectively. Here, 0′′ represents the top of the chromosphere.

as at high acceleration timescales the distributions are more scattered; this may be due to a lack of
electrons at higher energies. The scattered distribution at higher acceleration timescales makes it
difficult to separate the different spatial extents, which is possible at τacc = 800τc. Such that, electron
depth into the chromosphere for σ1 < σ3 < σ7, for a given energy. It is difficult to distinguish between
the l and r spatial functions. Once again, these functions may be better compared to a g distribution
of a smaller spatial extent, i.e., σ1, g, α3.

Figure 9 shows the average depth for electrons of energy 15 keV ≤ E < 100 keV, versus acceleration
timescale. As acceleration timescale increases, depth decreases, as expected. Although chromospheric
nV F is lower for simulations with shorter timescale turbulent scattering, the average depth for all
electron energies between 15 keV ≤ E < 100 keV, is approximately the same, as seen in Figure 9.

The velocity dependence changes depth versus acceleration timescale such that we see greater
chromospheric depths for larger α. The greater the spatial extent, the greater the depth. However,
it is difficult to distinguish between σ1 and σ3. The different spatial functions cannot be identified
easily either.
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Figure 9. Average depth of electrons in the chromosphere between 15 keV ≤ E < 100 keV, versus accel-
eration timescale τacc for different (a) spatial extents, (b) spatial functions, and (c) velocity dependencies.
Crosses and circles show simulations with and without including shorter timescale turbulent scattering,
respectively.

Overall, studying the emission in the chromosphere may help to constrain the acceleration timescale
by studying (1) the gradient of depth versus energy and (2) the depth of low energy electrons (E . 15
keV) in the chromosphere. This diagnostic is useful for limb flares, such as that studied in Kontar
et al. (2010). If the acceleration timescale is low, depth vs energy may also indicate the spatial
extent of the acceleration region. Alternatively, if the acceleration timescale is high, the average
depth versus acceleration timescale may constrain the velocity dependence.

3.3.3. Coronal looptop

The spatial distribution in the coronal loop, −20′′ < z < 20′′ (see the middle panel of Figure 2) can
be approximated with a Gaussian distribution in the majority of cases. For each acceleration region,
the full width at half maximum (FWHM) [arcseconds] was determined for electrons with energy 10
keV < E < 15 keV9 using:

FWHM = 2
√

2ln2 ∆z , (19)

where ∆z [arcseconds] is the standard deviation of the Gaussian distribution. Figure 10 shows the
FWHM against τacc for each acceleration region studied. Some spatial distributions (e.g., σ1, g, α3

at 800τc) may be better fitted with a kappa distribution. However, due to the current instrumental
resolution and the indirect techniques employed with X-ray data, a Gaussian distribution is suitable
in determining the coronal source width (FWHM).

For all simulations the measured FWHM is larger than the extent of the acceleration region (i.e.,
2
√

2ln2σ for a Gaussian region). For example ∆z/σ = 3.4, 1.6, and 1.3, for σ1, σ3, and σ7, respectively.
Thus, this ratio decreases as spatial extent increases.

The FWHM is fairly constant as τacc increases. Changing the velocity dependence and the spatial
function does not have any clear impact on the FWHM. In comparison, the spatial extent of the
acceleration region greatly affects the looptop FWHM (Figure 10a), where FWHM[σ7 > σ3 > σ1].
Thus, the FWHM of the coronal source is extremely useful for constraining the spatial extent of

9 The energy range is chosen to allow comparison with observational results, e.g., Jeffrey et al. (2015), where the FWHM
of a coronal looptop source is determined from X-ray data.
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Figure 10. Coronal looptop FWHM versus τacc for different (a) spatial extents, (b) spatial functions,
and (c) velocity dependencies. Crosses and circles denote simulations with and without shorter timescale
turbulent scattering.

the acceleration region. Again, any coronal diagnostic can be affected by the presence of a separate
background thermal component. Making the assumption that the majority of the background heating
occurs in an identical location to the region of acceleration, this source would only increase the peak
intensity of the coronal loop emission whilst the FWHM is not affected.

The addition of shorter timescale turbulent scattering slightly increases the FWHM by ∼ 2′′ for
each simulation. The exception to this is σ7, g, α3 where the FWHM increases by up to ∼ 15′′.

4. DISCUSSION AND SUMMARY

This study has focused on an extended turbulent acceleration region and how changing the spatial
extent, the spatial distribution, and the velocity dependence of the acceleration region affects the
electron distribution for various acceleration timescales, with the purpose of finding useful spectral
and imaging diagnostics that can constrain the acceleration properties from X-ray data alone.

For several diagnostics (δnV F , ϕ, η, depth into chromosphere) setting the velocity dependence
to α = 2 and α = 4 provides approximate upper and lower acceleration boundaries for the bulk
of acceleration times studied. When α = 2 the resulting electron distribution is mainly thermal
and concentrated in the coronal loop. These electrons do not travel far into the chromosphere.
Alternatively, α = 4 rapidly accelerates electrons in the corona and electrons propagate deep into the
chromosphere. As a result, the energy spectrum for α = 4 is very flat for all acceleration timescales
and the nV F spatial distribution contains large peaks in the chromosphere and is significantly flatter
in the corona. Between these two extremes are simulations when α = 3.

The difference in spectral index for the spatially resolved spectra in the looptop and footpoint
regions is suggestive of electron confinement, δLTnV F − δFPnV F < 2. Here, this difference occurs for
low acceleration efficiency (i.e., large τacc), and no additional trapping mechanism is required. Not
usually studied, the ratio between the spectral index at the looptop and footpoints (δLTnV F/δ

FP
nV F )

exponentially decreases as the acceleration timescale τacc increases. The spatial distribution of the
emitting electrons drastically changes with τacc. For large τacc, emission occurs almost exclusively
in the coronal looptop source. However, at small τacc, emission becomes significant in the coronal
footpoints.
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Combining diagnostics helps to determine the properties of the acceleration region. If both X-ray
spectral and imaging diagnostics are available, we suggest following this method to constrain the
acceleration region properties:

1. Spatial Extent: this can be estimated from the FWHM of the coronal loop. As discussed, the
measured FWHM of the loop is always larger than that of the actual acceleration region. If
the observed flare has a small background thermal component then ϕ, the ratio of looptop to
footpoint nV F , may be used to determine the spatial extent. Alternatively, if the background
thermal component is large, the depth lower energy (< 20 keV) electrons reach in the chromo-
sphere and the gradient of electron depth with energy, may provide some insight on the spatial
extent. However, this can only be applied at low acceleration timescales.

2. Velocity Dependence: the spectral index can be used to determine the velocity dependence,
where a larger velocity dependence has a smaller spectral index. Further to this, if the observed
flare has a small background thermal component, ϕ and η, the ratio of nV F at specific energy
ranges, may also be used to determine the velocity dependence. To further investigate the
velocity dependence, determine electron depth into the chromosphere for different energies if
possible (i.e., limb flares).

3. Spatial Function: Identifying the spatial function is the most difficult. If the background
thermal component of the coronal loop is small, ϕ may be used to determine the spatial
function of the acceleration region. If the background thermal component is large, then begin
by examining at the spectral index. A linear and random function resulted in a spectral index
which was larger than that of a Gaussian function. Yet, the FWHM of the coronal looptop is
similar for linear, random and Gaussian functions. Observing this may indicate a non-Gaussian
spatial distribution. Distinguishing between non-Gaussian distributions is harder, but again,
this may be achieved with ϕ if the background thermal component is small. Further, if EUV
spectral data is available, then it might be possible to constrain the spatial distribution by
combining the data.

4. Acceleration timescale: After determining the spatial extent, spatial function and velocity
dependence, the acceleration timescale should be constrained. Information regarding the accel-
eration timescale may be determined from studying the ratio of spectral index in the looptop to
footpoints (δLTnV F/δ

FP
nV F ). If the ratio > 1 then the acceleration timescale is small. Furthermore,

studying how electron depth into the chromosphere changes with energy may help to determine
τacc. In addition, the deeper the low energy (≈ 15− 20 keV) emission into the chromosphere,
the shorter the acceleration timescale.

5. Level of turbulent scattering : The presence of shorter-timescale turbulent scattering leads to
spectral steepening. Alternatively, ϕ appears to decrease with the presence of shorter-timescale
turbulent scattering. If the acceleration timescale is small, the emission in the chromospheric
footpoints may also indicate if there is short-timescale turbulent scattering present, as the
emission drastically decreases compared to when there is no turbulent scattering.

The simulations shown here are obviously a small set showing the applicability of different X-
ray spectral and imaging diagnostics. We cannot simulate all plasma properties or every possible
transport mechanism in the corona. Next, we will apply our diagnostics to suitable flares using
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Figure 11. δLTnV F ≈ δ1AU versus γ = δnV F +1 for all modelled acceleration regions, and representing different
flare observations where we see different populations of electrons at the Sun (producing HXRs) and in-situ
in the heliosphere. The gradient of the line of best fit (pink dashed-dot) for simulations without turbulent
scattering (top) and with short timescale turbulent scattering (bottom) is 0.707 and 0.673, respectively,
consistent with an approximate gradient of 0.70 in Krucker et al. (2007) for prompt events. The solid lines
on each graph represent the thick and thin target models.

archived RHESSI data and new SolO/STIX data, and simulations will be fine-tuned to match the
electron and plasma properties of an individual flare, and the position of the spacecraft in the
heliosphere (any parameters with units of arcsecond here are calculated at a distance of 1 AU).

Lastly, Krucker et al. (2007) compared the HXR photon spectral index γ, measured remotely at
the Sun, with the spectral index of related flare-accelerated electrons measured in-situ at 1AU, δ1AU.
The results of our combined acceleration and transport modelling are consistent with Krucker et al.
(2007), if we plot δLTnV F ≈ δ1AU (Figure 11) against γ = δnV F + 1, where we have assumed that
δLTnV F in the corona is identical to δ1AU, and that both sets of electrons are produced in the same
acceleration region. This suggests that there is no need to employ secondary acceleration models
when observations are not fully consistent with either a thin or thick target model. We are now
investigating this in a more considered manner using electron modelling in the heliosphere and a
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comparison with HXR-producing electrons at the Sun. The use of in-situ data, when available,
alongside the suggested diagnostics will help to further constrain the properties of the solar flare
acceleration environment.
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